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Abstract. We discuss design considerations and the realization of a magnetic double-well potential on an
atom chip using current-carrying wires. Stability requirements for the trapping potential lead to a typical
size of order microns for such a device. We also present experiments using the device to manipulate cold,
trapped atoms.

PACS. 39.20.+q Atom interferometry techniques – 03.75.Lm Tunneling, Josephson effect, Bose-Einstein
condensates in periodic potentials, solitons, vortices and topological excitations

1 Introduction

Progress in the fabrication and use of atom chips has been
rapid in the past few years [1]. Two notable recent results
concern the coherent manipulation of atomic ensembles on
the chip: reference [2] reported the coherent superposition
of different internal degrees of freedom while in [3,4] a co-
herent beam splitter and interferometer using Bragg scat-
tering was reported. In the same vein, the observation of
a coherent ensemble in a chip-based double-well potential
also represents a significant milestone and motivates many
experiments [5,6]. The dynamics of a Bose-Einstein con-
densate in a double-well potential has attracted an enor-
mous amount of theoretical attention [7], in part because
one can thus realize the analog of a Josephson junction.
Indeed, coherent oscillations of atoms in a laser induced
double-well potential have recently been observed [8]. In
addition, the observation of an oscillation in a double-well
amounts to the realization of a coherent beam splitter
which promises to be enormously useful in future atom
interferometers based on atom chips [9–12].

In this paper, we discuss progress towards the real-
ization of coherent oscillations on an atom chip following
a different way than references [5,6]. We begin with some
theoretical considerations concerning atoms in double-well
potentials and show that a configuration with two elon-
gated Bose-Einstein condensates that are coupled along
their entire length allows one to achieve a variety of os-
cillation regimes. Then, we will discuss design consider-
ations which take into account stability requirements for
the trapping potentials in the transverse direction. Fluc-
tuations in the external magnetic fields impose a typical
size less than or on the order of microns on the double-
well. Atom chips implemented with current-carrying wires
are well suited to elongated geometry and the micron
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size scale. After these general considerations, we discuss a
particular realization of a magnetic double-well potential
which has been constructed in our laboratory. Our device
has much in common with the proposal of reference [10],
but we believe it represents an improvement over the first
proposal in that it is quite robust against technical noise
in the various currents. We will also show some initial ob-
servations with the device using trapped 87Rb atoms.

2 Dynamics of two elongated Bose-Einstein
condensates coupled by tunneling

The dynamics of a Bose-Einstein condensate in a double-
well potential has been widely discussed in the litera-
ture [7]. In this section, we will review some of the basic
results and apply them to the case of two elongated con-
densates coupled by tunneling along their entire length L.

We assume the trapping potential can be written as
the sum of a weakly confining longitudinal potential Vl(z)
and a two dimensional (2D) double-well in the transverse
direction Vr(r). We characterize the two transverse po-
tential wells by the harmonic oscillator frequency at their
centers, ω0. We also assume that the longitudinal motion
of the atoms is decoupled from the transverse motion, so
that we may restrict ourselves to a 2D problem. As dis-
cussed in [13], this assumption is not always valid, but it
gives a useful insight into the relevant parameters of the
problem and how they affect the design of the experiment.

Considering the motion of a single atom, the lowest two
energy states of the 2D potential Vr are symmetric and an-
tisymmetric states, |φs〉 and |φa〉. The energy splitting � δ
between them is related to the tunneling matrix element
between the states describing a particle in the right and
left wells, |φr〉 and |φl〉. When including atom-atom inter-
actions, we assume that the longitudinal linear density n1
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is low enough to satisfy n1 a � 1 where a is the s-wave
scattering length. In this case, the interaction energy is
small compared to the characteristic energy � ω0 of the
transverse motion, and in a mean field approximation the
eigenstates of the Gross-Pitaevskii equation are identical
to the single particle eigenstates. The tunneling rate δ is
unchanged in this approximation. If in addition, δ � ω0,
the two mode approximation in which one considers only
the states |φs〉 and |φa〉 (or |φl〉 and |φr〉) is valid.

We now define two characteristic energies EJ and EC .
The Josephson energy EJ = N � δ/2 characterizes the
strength of the tunneling between the wells. The charging
energy EC = 4 � ω0 a/L is analogous to the charging en-
ergy in a superconducting Josephson junction and charac-
terizes the strength of the inter atomic interaction in each
well. The properties of the system depend drastically on
the ratio EC/EJ [7]. For the considered elongated geome-
try, this ratio is equal to (4 n1 a)× (ω0/δ)× 1/N2. A ratio
ω0/δ of 10 is enough to insure the validity of the two mode
approximation. We have also assumed n1 a � 1 and since
N � 1 we indeed obtain EC/EJ � 1. This means that
the phase difference between the two wells is well defined
and that a mean field description of the system is valid.

In the mean field approximation, the transverse
part of the atomic wavefunction can be written
|φ〉 = cl |φl〉 + cr |φr〉 where cl and cr are complex num-
bers. The atom number difference ∆N = (|cl|2 − |cr|2)/2
and the phase difference ∆θ = arg(cl/cr) evolve as the
classically conjugate variables of a non rigid pendulum
Hamiltonian [15]. The solutions of the motion for ∆N
and ∆θ have been analytically solved [15,16]. Depend-
ing on the ratio EJ/(N2 EC), we distinguish two regimes:
the Rabi regime (EJ � N2 EC) and the Josephson regime
(EJ � N2 EC). For a fixed geometry (L, δ and ω0

fixed), the Rabi regime is delimited by N � NC

where NC = δ L/(4 ω0 a) while the Josephson regime cor-
responds to N � NC . For a box like potential of length
L = 1 mm and a ratio ω0/δ = 10, this number corresponds
to NC = 5000 for 87Rb atoms.

In the Rabi regime, an initial phase difference of π/2
leads to the maximal relative atom number difference
∆N/N = 1/2. In the Josephson regime, the signal ∆N/N

is limited to
√

NC/N . One motivation to attain the Rabi
regime is to maximize the relative population difference.
If tunneling is to be used as a beam splitting device in an
atom interferometer, the Rabi regime is clearly favorable
as it maximizes the measured signal. It is also important
to note that the neglect of any longitudinal variations in
the atom number difference or the relative phase is only
valid deep in the Rabi regime [13].

The specific geometry of two elongated Bose-Einstein
condensates coupled by tunneling is of special interest
since it allows one to tune the strength of the interac-
tion compared to the tunneling energy by adjusting the
longitudinal atomic density. This allows realization of ex-
periments in both the Rabi regime and the Josephson
regime. On the other hand a complication of the elon-
gated geometry is the coupling between the transverse
and longitudinal motions introduced by interactions be-
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Fig. 1. Adding a small magnetic field b to the magnetic
hexapole described in equation (1) will split the hexapole into
two quadrupoles. The distance between the two minima in-
creases with b and the direction along which the minima are
split depends on the orientation of b as shown in the figure.
We also have plotted lines of constant modulus of the total
magnetic field (equipotential lines for the atoms).

tween atoms. This coupling is responsible for dynamical
longitudinal instabilities in presence of uniform Josephson
oscillations [13]. However, reference [13] predicts that a
few Josephson oscillations periods should be visible before
instabilities become too strong. Furthermore, the study
of these instabilities may prove quite interesting in their
own right. Other manifestations of the coupling between
the transverse and the longitudinal motion may be ob-
served. In particular, Josephson vortices are expected for
large linear density [14]. These nonlinear phenomena are
analogous to observations on long Josephson junctions in
superconductors [17].

3 Realization of a magnetic double-well
potential

We now turn to some practical consideration concern-
ing the realization of the transverse double-well potential
Vr(x, y) using a magnetic field. As first pointed out in [10],
a hexapolar magnetic field is a good starting point to pro-
duce such a potential. The hexapolar field can be written

{
Bx = A (y2 − x2) = −Ar2 cos 2θ
By = 2 Axy = Ar2 sin 2θ .

(1)

where A is a constant characterizing the strength of
the hexapole. In the following, we write this constant
A = α µ0 I/(4 π d3) where I is the current used to create
the hexapole, d is the typical size of the current distri-
bution creating the magnetic field (see Fig. 4) and α is a
geometrical factor close to unity. Adding a uniform trans-
verse magnetic field b = b(cos θb x+sin θb y) will split the
hexapole into two quadrupoles, thus realizing a double-
well potential. The two minima are separated by a dis-
tance 2 X0 where X0 =

√
b/A and are located on a line

making an angle θb/2 with the x-axis (see Fig. 1). Tilting
the axis of the double-well allows one to null the gravita-
tional energy shift which arises between the two wells if
they are not at the same height. This shift has to be pre-
cisely cancelled to allow the observation of unperturbed
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Fig. 2. Bohr frequency between the ground state and the
first two excited states of the double-well potential versus the
spacing between the wells. The dashed line corresponds to
X0 = 2.65 a0 for which the Bohr frequency ω2,0 is ten times
bigger than the tunneling rate δ = ω1,0.

phase oscillations in the double-well. For example, if the
two wells are separated by a vertical distance of 1 µm the
gravitational energy shift between the two wells leads to
a phase difference of 13 radms−1 for 87Rb.

In the rotated basis (O, X, Y ) (see Fig. 1), the modulus
of the total magnetic field is

B2 = 2 Ab Y 2 + 2 A2 X2 Y 2 + A2(X2 − X2
0 )2 . (2)

To prevent Majorana losses around each minimum, a uni-
form longitudinal magnetic field Bz is added. Under the
assumption Bz � b, the potential seen by an atom with
a magnetic moment µ and a mass m is

V (X, Y ) � m ω2
0

4
Y 2+

m ω2
0

4 X2
0

X2 Y 2+
m ω2

0

8 X2
0

(X2−X2
0 )2 (3)

with ω0 =
√

4 µ A b/(m Bz).
Around each minimum (X = ±X0, Y = 0), the po-

tential is locally harmonic with a frequency ω0 and we
denote a0 =

√
�/(m ω0) the size of the ground state of

this harmonic oscillator. On the X-axis, we recover the
1D double-well potential usually assumed in the litera-
ture. As seen in equation (3), the potential is entirely de-
termined by the values of ω0 and X0. We have computed
the energy differences between the ground state and the
two first excited states for a single atom as a function of
these two parameters (see Fig. 2). The Bohr frequency
ω1,0 is equal to the tunneling rate δ. We calculate that a
ratio X0/a0 = 2.65 ensures that ω2,0 = 10 δ, so that the
two mode approximation is valid. Further calculations are
made for a double-well potential fulfilling the condition
X0/a0 = 2.65.

3.1 Stability of the double-well

We now turn to the analysis of the stability of the system
with respect to fluctuations of magnetic field. We will im-
pose two physical constraints: first we require a stability of
10% on the tunneling rate δ and second we impose a grav-
itational energy shift between the two wells of less than
10% of the tunneling energy. Assuming a perfectly stable
hexapole and that fluctuations in the external fields can

be kept below 1 mG, we will obtain constraints on the pos-
sible size of the current distribution d and on the spacing
between the two wells X0.

The geometry of the magnetic double-well is deter-
mined by four experimental parameters: I the current cre-
ating the hexapole, d the size of the current distribution,
Bz the longitudinal magnetic field and b the transverse
field. To minimize the sensitivity of the system to mag-
netic field fluctuations, the current I creating the hexapole
should be maximized. If we suppose the wires that cre-
ate the hexapole are part of an atom chip, the maxi-
mal current allowed in such wires before damage scales
as I = I0(d/d0)3/2 [18]. Henceforth we suppose that the
current I follows this scaling law and is not a free pa-
rameter anymore. Furthermore, the condition of the last
section X0/a0 = 2.65 relates b and Bz . Thus we are left
with only two free parameters which may be chosen as the
size of the source d and the distance between the wells X0.
The experimental parameters b and Bz can be deduced af-
terwards.

We first calculate the variation ∆δ of the tunneling
rate due to longitudinal and transverse magnetic field fluc-
tuations (respectively noted ∆Bz and ∆b). From the nu-
merical calculation of the tunneling rate shown in Figure 2
we obtain

∆δ

δ
= −2.40

∆X0

X0
− 2.18

∆ω0

ω0
(4)

= −4.27
∆b

b
+ 1.09

∆Bz

Bz
. (5)

If we require a relative stability of 10% on the tunnel-
ing rate, the required relative stability for the magnetic
fields b and Bz is approximately the same and is easily
achievable with a standard experimental set-up. However
fluctuations due to the electromagnetic environment may
be problematic. Within the assumption Bz � b, only the
first term in equation (5) contributes. Thus we have

∆δ

δ
� −4.27

4 πd3

α µ0 I X2
0

∆b . (6)

Using the scaling law stated above for the current creating
the hexapole, we finally obtain the following expression
for the tunneling rate fluctuations due to variations of the
transverse magnetic field

∆δ

δ
� −4.27

(
4 π d

3/2
0

α µ0 I0

)
d3/2

X2
0

∆b . (7)

We require a relative stability of 10% for the tunneling
rate given an amplitude ∆b = 1 mG for the magnetic field
fluctuations. This limits the possible values for X0 and d to
the domain above the continuous line plotted in Figure 3.
For the numerical calculation, we have used a geometrical
factor α = 4/

√
3 (see Sect. 4) and the following values for

I0 and d0. A maximal current of I0 = 20 mA is reasonable
for gold wires having a square section of 500 nm× 500 nm
which are deposited on an oxidized silicon wafer [18].
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Fig. 3. Stability diagram for the size d, and the well separa-
tion X0. The gray area represents pairs of d and X0 for which
a 1 mG fluctuation of an external magnetic field does not sig-
nificantly disturb the double-well. The solid line delimits the
zone where the tunneling rate fluctuates less than 10%, while
the dashed line shows the area below which the fluctuations
of the gravitational energy are less than 10% of the tunneling
rate. In addition we show two additional constraints because
of Bz: the area above the dotted line assures a Bz large enough
to avoid Majorana losses and the dash-dotted line corresponds
to Bz < 100 G. The device we describe in Section 4 operates
at d = 5 µm.

Such wires can be used in a configuration where the typi-
cal distance between wires is d0 = 5 µm.

We now turn to the calculation of the fluctuations
of the gravitational energy shift between the two wells.
Transverse magnetic field fluctuations lead to fluctuations
∆h = ∆b/(AX0) of the height difference between the two
wells. The associated fluctuations of the gravitational en-
ergy difference have to be small compared to the tunnel-
ing energy so that the phase difference between the wells
is not significantly modified during one oscillation in the
double-well. The ratio between these two energies is

m g ∆h

� δ
� 2.37

(
4 π m2 g d

3/2
0

α µ0 I0 �2

)

X0 d3/2 ∆b . (8)

We have used the same scaling law as before for the cur-
rent in the hexapole. The possible values for X0 and d that
insure this ratio being smaller than 10% are located below
the dashed line in Figure 3. We have assumed the same
numerical parameters as for the first condition. The inter-
section of the two possible domains we have calculated for
X0 and d corresponds to the gray area in Figure 3. The
main result is that the characteristic size of the source d
has to be smaller than 7.5 µm in order to achieve a rea-
sonable stability of the double-well. This motivates the
use of atom chips to create a magnetic double-well where
external magnetic fluctuations of 1 mG still allows the pos-
sibility of coherently splitting a Bose-Einstein condensate
using a magnetic double-well potential.

We have also plotted in Figure 3 the limit (dotted line)
above which the condition µ Bz > 10 � ω0 is fulfilled. This
insures the Majorana loss to be negligible in the double-
well. Furthermore, above this line the condition Bz � b
which is assumed in all our calculation is also fulfilled.
We see this condition is not very restrictive and does not
significantly reduce the domain of possible parameters.
However we note that this condition becomes the limiting
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Fig. 4. Two configurations that produce a hexapolar mag-
netic field. Each wire carries the same current I . In (a) the
hexapole is obtained with two wires and a uniform magnetic
field B0 = µ0 I/(2π d). In (b) it is produced by 5 wires and
no external field. In the first configuration the stability of B0

relative to I is critical. The second configuration avoids this
difficulty provided that the wires are connected in series.

factor as one decreases the size d of the current distribu-
tion. The last plotted dash-dotted line delimits the more
practical usable parameters. Above this line the longitudi-
nal field Bz is greater than 100 G. Such high values of the
longitudinal field should be avoided since the longitudinal
field may have a small transverse component that would
disturb the double-well.

4 Experimental realization of a magnetic
double-well on an atom chip

As first proposed in [10], the simplest scheme to obtain a
hexapolar magnetic field on an atom chip uses two wires
and an external uniform field (see Fig. 4a). Denoting 2 d
the distance between the two wires, the value of the ex-
ternal field has to be B0 = µ0 I/(2 π d). One then obtains
a hexapole located at a distance d from the surface of
the chip. This configuration leads to a geometrical factor
α = 1. In order to safely lie in the stability domain in Fig-
ure 3, one can choose d = 5 µm. This leads to a current
I = 20 mA and to a uniform magnetic field B0 = 8 G. The
required relative stability ∆B0/B0 for this field is about
10−4 since fluctuations of only 1 mG are tolerable1. Rela-
tive temporal stability of this magnitude can be achieved
with the appropriate experimental precaution, but it is
quite difficult to produce a spatially homogeneous field
on the overall length of the condensate (1 mm) with such
accuracy.

To circumvent this difficulty we propose to realize the
hexapolar field using only wires on the chip. Assuming
all the wires are fabricated on the same layer, at least
five wires must be used to create a hexapole. As seen in
Figure 4, the distance between the wires can be chosen so

1 More precisely the ratio I/B0 has to be kept constant with
such accuracy. Here we assume that the current I in the wires
does not fluctuate.
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Fig. 5. Schematic and SEM picture of our five wire device.
The design allows one to send the same current with a single
power supply in all the wires to create a magnetic hexapole.
The connections on the central wires allow us to imbalance the
currents between the central wire, the two left wires and the
two right wires.

that a hexapole is obtained with the same current running
in all the wires. This allows rejection of the noise from the
power supply delivering the current I. For this geometry,
we calculate α = 4/

√
3 which is the value we used to plot

the curves in Figure 3.
We have implemented this five wire scheme on an

atom chip. The wires are patterned on an oxidized silicon
wafer using electron beam lithography followed by liftoff
of a 700 nm thick evaporated gold layer. Each wire has a
700 nm× 700 nm cross-section and is 2 mm long. Figure 5
shows the schematic diagram of the chip and a SEM image
of the wire ends. This design allows us to send the same
current in the five wires using a single power supply. The
extra connections are used to add a current in the central
wire in order to split the hexapole into two quadrupoles
without any external magnetic field. We can also change
the current in the left (right) pair of wires in order to
release the atoms from the left (right) trap when the sep-
aration between the wells is large enough. The transverse
wires connecting the five wires at their ends insure the lon-
gitudinal confinement of the atoms in a box like potential.

The distance d characterizing the wire spacing is 5 µm.
Using the exact expression of the magnetic field created by
the five wires, we have carried out numerical calculation of
the spectrum of the double-well. Using a transverse field
b = 60 mG and a longitudinal field Bz = 550 mG, we
obtain a spacing between the wells of 2 X0 = 1.0 µm and
a tunneling rate of δ = 2π×290 Hz. The parameters have
been chosen to fulfill the condition ω0,2 = 10 δ and to lie in
the center of the stability domain. In our experiment, the
chip is oriented so that the gravity points in the direction
x + y in Figure 4. We thus have to tilt the transverse
field b using an angle θb = 0.74 × π to compensate for
the gravitational energy shift. Finally, we have checked
numerically that the two conditions on the stability of the
tunneling rate and of the gravitational energy shift are
indeed fulfilled.

4.1 Splitting of a thermal cloud

In order to load the double-well with a sample of cold
87Rb atoms, the five wire chip is glued onto an atom chip

like that used in a previous experiment to produce a Bose-
Einstein condensate [19]. The five wire chip surface is lo-
cated approximately 150 µm above the surface of the other
chip. This two-chip design allows one to combine wires
having very different sizes (typically 50 µm × 10 µm for
the first chip and 700 nm × 700 nm for the five wire chip)
and therefore different current-carrying capacities in a sin-
gle device. Large currents are needed to efficiently capture
the atoms from a MOT in the magnetic trap.

Using evaporative cooling, we prepare a sample of cold
atoms in a Ioffe trap created by a Z-shaped wire on the
first chip and a constant external field. Transfer of the
atoms to the double-well potential is achieved by ramping
down the current in the Z-shaped wire and the external
field while we ramp up the currents in the five wires. The
final value of the current in the central wire is smaller
(10.4 mA) than for the one in the other wires (17.5 mA).
We use the fact that an imbalanced current in the cen-
tral wire is qualitatively equivalent to adding an external
transverse field to the hexapole. Ignoring the field due to
the lower chip, these current values lead to two trapping
minima located on the y-axis. The position of the up-
per minimum is superimposed on the position of the Ioffe
trap due to the lower chip. We typically transfer of order
104 atoms having a temperature below 1 µK.

To realize a splitting experiment, we then increase the
current in the central wire to 17.5 mA and decrease the
current in the other wires to 15 mA. The duration of the
ramp is 20 ms. If the external transverse field is zero,
the two traps located on the y-axis coalesce when all the
currents are equal and then split along the x-axis when the
current in the central wire is above the one in the other
wires. Then, by lowering the current in the left (right)
wires to zero, we eliminate the atoms in the left (right)
trap and measure the number of atoms remaining in the
other trap using absorption imaging. If the external mag-
netic field has a small component along the y-axis, the
coalescence point is avoided and the atoms initially in
the upper trap preferentially go in the right (left) trap
if by is positive (negative). The number of atoms in the
left or in the right well as a function of by is plotted in
Figure 6. As expected, we observe a 50% split between
the two wells if the two traps coalesce using by = 0. For
an amplitude of the magnetic field by larger than 0.6 G,
the transferred fraction of atoms is almost zero. For this
specific value of the transverse magnetic field, the atomic
temperature at closest approach between the wells is es-
timated to be 420 nK. On the other hand, for this trans-
verse field and for the longitudinal field Bz = 1 G used in
the experiment, the barrier height between wells at closest
approach is 12 µK. Thus, the value of the atomic temper-
ature seems too small to explain our observations. The
estimated atomic temperature is calculated knowing the
initial temperature (220 nK) and assuming adiabatic com-
pression. We have reason to be confident in the adiabatic-
ity because the temperature is observed to be constant
when the splitting ramp is run backward and forward at
by = 0.6 G. More precisely, numerical calculations of the
classical trajectories during the splitting indicate that the
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Fig. 6. Final number of atoms in the right well (�) and in the
left well (◦) after a splitting experiment. The schematics depict
the trajectories of the two traps during the sequence. Initially
all the atoms are in the upper trap. Depending on the sign of
the y component of b, the atoms preferentially end in the left
or in the right well. The minimal distance between the traps
depends on the modulus of by. This distance is zero if by = 0,
leading to a splitting with half of the atoms in each well.

typical width of the curves shown in Figure 6 is approxi-
mately three times too large. For the moment, we do not
have a satisfactory explanation for this broadening.

4.2 Longitudinal potential roughness

For our present set-up, the actual longitudinal potential
differs from the ideal box-like potential because of distor-
tions in the current distribution inside the wires [19,20].
Preliminary measurements indicate a roughness with a
rms amplitude of a few mG and a correlation length of
a few µm. The condensate will thus be fragmented. Each
fragment will be trapped in a potential with a typical
longitudinal frequency of about 400 Hz. Given the same
number of atoms and the same total length for the whole
condensate, the longitudinal density in each fragment will
be approximately ten times higher than for the ideal box-
like potential. Thus the Rabi regime may be out of reach
with our present set-up. More precise measurements of the
exact longitudinal potential shape are in progress to de-
termine the maximum ratio EJ/(N2 EC) we can actually
achieve. Improved wire fabrication techniques may allow
us to obtain a flatter longitudinal potential and to increase
the EJ/(N2 EC) ratio.

5 Conclusion

We have shown that atom chip based set-ups are well
suited to produce a stable magnetic double-well poten-
tial. Our main argument is that atom chips allow one to
design a current distribution having a characteristic size
small enough so that oscillations of a condensate between
the wells can be reproducible despite a noisy electromag-
netic field environment.

We have fabricated a device using five wires spaced
by a distance of a few microns. The preliminary data in
Figure 6 shows that we have good control over our trans-
verse magnetic potential, although we cannot entirely val-
idate our design choices before having observed coherent

oscillations. To do this it remains to reproducibly place a
condensate in the trap so that the two mode description
applies and can be tested.

This work was supported by the E.U. under grants IST-2001-
38863 INTAS (Contract 211-855) and MRTN-CT-2003-505032
and by the D.G.A. (03.34.033).
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